VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
Accredited by NAAC with A++ Grade
B.E. (E.E.E.) I-Semester Main \& Backlog Examinations, Jan./Feb.-2024

Circuit Theory
Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A (10×2 $=20 \mathrm{Marks})$

8. Calculate the maximum power that can be delivered to the 6Ω resistor, assume source resistance as R_{0} ?

9. Explain the advantages of three phase system?
10. Write relation for the following in a delta connected three phase system?
a) Line voltage and phase voltage
b) Line current and phase current

$$
\text { Part-B }(5 \times 8=40 \text { Marks })
$$

11. a)

Evaluate equivalent resistance $\left(\mathrm{R}_{\mathrm{eq}}\right)$ for the circuit shown below?

b)

Compute the current ' i ' and the value of ' v_{0} ' in the circuit shown below?

12. a) Find the node voltages in the circuit shown below using Nodal analysis. Node numbers are assigned as 1,2 and 3 in the circuit.

2	2	4	$1,2,3,12$
2	1	5	$1,2,3,12$
2	2	5	$1,2,3,12$

$4111,2,3,12$
$4211,2,3,12$
$\begin{array}{lll}4 & 3 & 2\end{array} 1,2,3,12$

Contd... 3
b) Evaluate the following for the waveform shown below (a) Average value (b) RMS value (c) Form factor (d) Peak factor

13. a) Show that average power consumed by a pure inductive circuit is zero, when excited by sinusoidal voltage source.
b) A series RLC circuit of resistance R, inductance L and a capacitance C, is excited by an AC voltage source $v=\mathrm{V}_{\mathrm{m}} \cos (w t)$. Write the expression for the following (a) Inductive reactance and capacitive reactance (b) Impedance of the circuit (c) Current through the circuit (d) Active power consumed by the circuit.
14. a) Find Thevenin's equivalent of the circuit shown below across the terminals a-b?

b) Derive the condition to get maximum power transfer to the load, in an AC excitation circuit of source voltage $V_{T H}$, source impedance $Z_{T H}=R_{T H}+$ $j X_{T H}$ and load impedance $Z_{L}=R_{L}+j X_{L}$.

15. a) With a neat diagram, explain the measurement of three phase power using two wattmeter method?
b) A three-phase, balanced delta-connected load of $(4+j 8) \Omega$ is connected across a $415 \mathrm{~V}, 50 \mathrm{~Hz}$, three-phase balanced power supply. Determine the phase currents and line currents. Assume phase sequence as RYB.
$\begin{array}{llll}4 & 3 & 2 & 1,2,3,12\end{array}$
$\begin{array}{llll}4 & 2 & 3 & 1,2,3,12\end{array}$
$4131,2,3,12$
$\begin{array}{llll}4 & 3 & 4 & 1,2,3,12\end{array}$
$4241,2,3,12$
$\begin{array}{llll}4 & 2 & 5 & 1,2,3,12\end{array}$
$\begin{array}{llll}4 & 3 & 5 & 1,2,3,12\end{array}$
16. a) Derive the expression for equivalent resistance of the circuit shown below, if ' N ' number of resistors are connected in series across a voltage source $V \mathrm{~s}$. Also derive the expression for voltage across N^{th} resistor?

b) Determine the voltage ' v ' and current ' i ' in the circuit shown below using Nodal analysis?

17.

Answer any two of the following:
a)

Evaluate $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ and $I_{o}^{\prime \prime}$ using mesh analysis in the circuit shown below?

b) Find current through 2Ω resistor in the circuit shown below using Superposition theorem?

c) Derive the expression for average active power in a balanced three phase system?

```
4 1 1

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome
\begin{tabular}{|c|l|l|}
\hline i) & Blooms Taxonomy Level - 1 & \(20 \%\) \\
\hline ii) & Blooms Taxonomy Level - & \(40 \%\) \\
\hline iii) & Blooms Taxonomy Level - 3 \& 4 & \(40 \%\) \\
\hline
\end{tabular}```

